Abstract:Anti-UAV tracking poses significant challenges, including small target sizes, abrupt camera motion, and cluttered infrared backgrounds. Existing tracking paradigms can be broadly categorized into global- and local-based methods. Global-based trackers, such as SiamDT, achieve high accuracy by scanning the entire field of view but suffer from excessive computational overhead, limiting real-world deployment. In contrast, local-based methods, including OSTrack and ROMTrack, efficiently restrict the search region but struggle when targets undergo significant displacements due to abrupt camera motion. Through preliminary experiments, it is evident that a local tracker, when paired with adaptive search region adjustment, can significantly enhance tracking accuracy, narrowing the gap between local and global trackers. To address this challenge, we propose FocusTrack, a novel framework that dynamically refines the search region and strengthens feature representations, achieving an optimal balance between computational efficiency and tracking accuracy. Specifically, our Search Region Adjustment (SRA) strategy estimates the target presence probability and adaptively adjusts the field of view, ensuring the target remains within focus. Furthermore, to counteract feature degradation caused by varying search regions, the Attention-to-Mask (ATM) module is proposed. This module integrates hierarchical information, enriching the target representations with fine-grained details. Experimental results demonstrate that FocusTrack achieves state-of-the-art performance, obtaining 67.7% AUC on AntiUAV and 62.8% AUC on AntiUAV410, outperforming the baseline tracker by 8.5% and 9.1% AUC, respectively. In terms of efficiency, FocusTrack surpasses global-based trackers, requiring only 30G MACs and achieving 143 fps with FocusTrack (SRA) and 44 fps with the full version, both enabling real-time tracking.
Abstract:Despite recent advances in Large Language Models (LLMs) for code generation, the quality of LLM-generated code still faces significant challenges. One significant issue is code repetition, which refers to the model's tendency to generate structurally redundant code, resulting in inefficiencies and reduced readability. To address this, we conduct the first empirical study to investigate the prevalence and nature of repetition across 19 state-of-the-art code LLMs using three widely-used benchmarks. Our study includes both quantitative and qualitative analyses, revealing that repetition is pervasive and manifests at various granularities and extents, including character, statement, and block levels. We further summarize a taxonomy of 20 repetition patterns. Building on our findings, we propose DeRep, a rule-based technique designed to detect and mitigate repetition in generated code. We evaluate DeRep using both open-source benchmarks and in an industrial setting. Our results demonstrate that DeRep significantly outperforms baselines in reducing repetition (with an average improvements of 91.3%, 93.5%, and 79.9% in rep-3, rep-line, and sim-line metrics) and enhancing code quality (with a Pass@1 increase of 208.3% over greedy search). Furthermore, integrating DeRep improves the performance of existing repetition mitigation methods, with Pass@1 improvements ranging from 53.7% to 215.7%.
Abstract:Large language models (LLMs) are widely used for natural language understanding and text generation. An LLM model relies on a time-consuming step called LLM decoding to generate output tokens. Several prior works focus on improving the performance of LLM decoding using parallelism techniques, such as batching and speculative decoding. State-of-the-art LLM decoding has both compute-bound and memory-bound kernels. Some prior works statically identify and map these different kernels to a heterogeneous architecture consisting of both processing-in-memory (PIM) units and computation-centric accelerators. We observe that characteristics of LLM decoding kernels (e.g., whether or not a kernel is memory-bound) can change dynamically due to parameter changes to meet user and/or system demands, making (1) static kernel mapping to PIM units and computation-centric accelerators suboptimal, and (2) one-size-fits-all approach of designing PIM units inefficient due to a large degree of heterogeneity even in memory-bound kernels. In this paper, we aim to accelerate LLM decoding while considering the dynamically changing characteristics of the kernels involved. We propose PAPI (PArallel Decoding with PIM), a PIM-enabled heterogeneous architecture that exploits dynamic scheduling of compute-bound or memory-bound kernels to suitable hardware units. PAPI has two key mechanisms: (1) online kernel characterization to dynamically schedule kernels to the most suitable hardware units at runtime and (2) a PIM-enabled heterogeneous computing system that harmoniously orchestrates both computation-centric processing units and hybrid PIM units with different computing capabilities. Our experimental results on three broadly-used LLMs show that PAPI achieves 1.8$\times$ and 11.1$\times$ speedups over a state-of-the-art heterogeneous LLM accelerator and a state-of-the-art PIM-only LLM accelerator, respectively.
Abstract:Accurate physical activity level (PAL) classification could be beneficial for osteoarthritis (OA) management. This study examines the impact of sensor placement and deep learning models on AL classification using the Metabolic Equivalent of Task values. The results show that the addition of anankle sensor (WA) significantly improves the classification of intensity activities compared to wrist-only configuration(53% to 86.2%). The CNN-LSTM model achieves the highest accuracy (95.09%). Statistical analysis confirms multi-sensor setups outperform single-sensor configurations (p < 0.05). The WA configuration offers a balance between usability and accuracy, making it a cost-effective solution for AL monitoring, particularly in OA management.
Abstract:The intersection of medical imaging and artificial intelligence has become an important research direction in intelligent medical treatment, particularly in the analysis of medical images using deep learning for clinical diagnosis. Despite the advances, existing keyframe classification methods lack extraction of time series features, while ultrasonic video classification based on three-dimensional convolution requires uniform frame numbers across patients, resulting in poor feature extraction efficiency and model classification performance. This study proposes a novel video classification method based on CNN and LSTM, introducing NLP's long and short sentence processing scheme into video classification for the first time. The method reduces CNN-extracted image features to 1x512 dimension, followed by sorting and compressing feature vectors for LSTM training. Specifically, feature vectors are sorted by patient video frame numbers and populated with padding value 0 to form variable batches, with invalid padding values compressed before LSTM training to conserve computing resources. Experimental results demonstrate that our variable-frame CNNLSTM method outperforms other approaches across all metrics, showing improvements of 3-6% in F1 score and 1.5% in specificity compared to keyframe methods. The variable-frame CNNLSTM also achieves better accuracy and precision than equal-frame CNNLSTM. These findings validate the effectiveness of our approach in classifying variable-frame ultrasound videos and suggest potential applications in other medical imaging modalities.
Abstract:Heart rate variability (HRV) is widely recognized as a valuable biomarker for assessing autonomic cardiac regulation. Pulse rate variability (PRV) is a common surrogate of HRV given the wide usability of PPG in commercially available devices. However, there is no clear conclusion on whether PRV can replace HRV given their different physiological mechanisms. This study evaluates the interchangeability of young adults HRV and PRV during supine-to-stand (STS) tests which are known as common posture transitions in daily life monitoring. Fifteen features from time, frequency and nonlinear domains were extracted from both electrocardiography and PPG signals. Paired t-tests and Wilcoxon signed-rank tests examined the difference between the extracted HRV and PRV features during supine, transition and standing phases separately. One feature showed significant difference in the supine phase, and this discrepancy increased to four in the transition and standing phases. These findings suggested that PRV is different from HRV in the STS tests, despite the fact that both metrics can reflect the sympathetic activation triggered by the posture changes.
Abstract:Recent advances of large language models in the field of Verilog generation have raised several ethical and security concerns, such as code copyright protection and dissemination of malicious code. Researchers have employed watermarking techniques to identify codes generated by large language models. However, the existing watermarking works fail to protect RTL code copyright due to the significant syntactic and semantic differences between RTL code and software code in languages such as Python. This paper proposes a hardware watermarking framework RTLMarker that embeds watermarks into RTL code and deeper into the synthesized netlist. We propose a set of rule-based Verilog code transformations , ensuring the watermarked RTL code's syntactic and semantic correctness. In addition, we consider an inherent tradeoff between watermark transparency and watermark effectiveness and jointly optimize them. The results demonstrate RTLMarker's superiority over the baseline in RTL code watermarking.
Abstract:Cloud computing has revolutionized the provisioning of computing resources, offering scalable, flexible, and on-demand services to meet the diverse requirements of modern applications. At the heart of efficient cloud operations are job scheduling and resource management, which are critical for optimizing system performance and ensuring timely and cost-effective service delivery. However, the dynamic and heterogeneous nature of cloud environments presents significant challenges for these tasks, as workloads and resource availability can fluctuate unpredictably. Traditional approaches, including heuristic and meta-heuristic algorithms, often struggle to adapt to these real-time changes due to their reliance on static models or predefined rules. Deep Reinforcement Learning (DRL) has emerged as a promising solution to these challenges by enabling systems to learn and adapt policies based on continuous observations of the environment, facilitating intelligent and responsive decision-making. This survey provides a comprehensive review of DRL-based algorithms for job scheduling and resource management in cloud computing, analyzing their methodologies, performance metrics, and practical applications. We also highlight emerging trends and future research directions, offering valuable insights into leveraging DRL to advance both job scheduling and resource management in cloud computing.
Abstract:In recent years, researchers have attempted to exploit social relations to improve the performance in recommendation systems. Generally, most existing social recommendation methods heavily depends on substantial domain knowledge and expertise in primary recommendation tasks for designing useful auxiliary tasks. Meanwhile, Self-Supervised Learning (SSL) recently has received considerable attention in the field of recommendation, since it can provide self-supervision signals in assisting the improvement of target recommendation systems by constructing self-supervised auxiliary tasks from raw data without human-annotated labels. Despite the great success, these SSL-based social recommendations are insufficient to adaptively balance various self-supervised auxiliary tasks, since assigning equal weights on various auxiliary tasks can result in sub-optimal recommendation performance, where different self-supervised auxiliary tasks may contribute differently to improving the primary social recommendation across different datasets. To address this issue, in this work, we propose Adaptive Self-supervised Learning for Social Recommendations (AdasRec) by taking advantage of various self-supervised auxiliary tasks. More specifically, an adaptive weighting mechanism is proposed to learn adaptive weights for various self-supervised auxiliary tasks, so as to balance the contribution of such self-supervised auxiliary tasks for enhancing representation learning in social recommendations. The adaptive weighting mechanism is used to assign different weights on auxiliary tasks to achieve an overall weighting of the entire auxiliary tasks and ultimately assist the primary recommendation task, achieved by a meta learning optimization problem with an adaptive weighting network. Comprehensive experiments on various real-world datasets are constructed to verify the effectiveness of our proposed method.
Abstract:We empirically study the scaling properties of various Diffusion Transformers (DiTs) for text-to-image generation by performing extensive and rigorous ablations, including training scaled DiTs ranging from 0.3B upto 8B parameters on datasets up to 600M images. We find that U-ViT, a pure self-attention based DiT model provides a simpler design and scales more effectively in comparison with cross-attention based DiT variants, which allows straightforward expansion for extra conditions and other modalities. We identify a 2.3B U-ViT model can get better performance than SDXL UNet and other DiT variants in controlled setting. On the data scaling side, we investigate how increasing dataset size and enhanced long caption improve the text-image alignment performance and the learning efficiency.